STAT 2593

Lecture 006 - Axioms, Interpretations, and Properties of Probability

Dylan Spicker

Axioms, Interpretations, and Properties of Probability

1. Understand the frequentist interpretation of probability.
2. Understand the three axioms of probability.
3. Understand and manipulate properties arising from the axioms of probability.

What do I really mean if I say "the probability of rolling a 1 on a die is

$$
1 / 6^{\prime \prime} ?
$$

Interpretations of Probability

- Intuitively, probability assigns a numeric value to events, describing their likelihood.

Interpretations of Probability

- Intuitively, probability assigns a numeric value to events, describing their likelihood.
- One approach is to use the frequentist interpretation of probability.

Interpretations of Probability

- Intuitively, probability assigns a numeric value to events, describing their likelihood.
- One approach is to use the frequentist interpretation of probability.
- From this vantage point, probability is the long-run proportion of times that an event occurs.

Interpretations of Probability

- Intuitively, probability assigns a numeric value to events, describing their likelihood.
- One approach is to use the frequentist interpretation of probability.
- From this vantage point, probability is the long-run proportion of times that an event occurs.
- If you repeat an experiment many, many, many times, you could count the frequency.

Interpretations of Probability

- Intuitively, probability assigns a numeric value to events, describing their likelihood.
- One approach is to use the frequentist interpretation of probability.
- From this vantage point, probability is the long-run proportion of times that an event occurs.
- If you repeat an experiment many, many, many times, you could count the frequency.
- There are other interpretations of what probability is, but we are not concerned with them.

Axioms of Probability

- There are 3 basic properties, or axioms, which define valid probabilities:

Axioms of Probability

- There are 3 basic properties, or axioms, which define valid probabilities:

1. For any event, $A, P(A) \geq 0$.

Axioms of Probability

- There are 3 basic properties, or axioms, which define valid probabilities:

1. For any event, $A, P(A) \geq 0$.
2. For the sample space, $\mathcal{S}, P(\mathcal{S})=1$.

Axioms of Probability

- There are 3 basic properties, or axioms, which define valid probabilities:

1. For any event, $A, P(A) \geq 0$.
2. For the sample space, $\mathcal{S}, P(\mathcal{S})=1$.
3. For a countable collection of disjoint sets, A_{1}, A_{2}, \ldots, we have

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\sum_{j=1}^{\infty} P\left(A_{i}\right)
$$

Axioms of Probability

- There are 3 basic properties, or axioms, which define valid probabilities:

1. For any event, $A, P(A) \geq 0$.
2. For the sample space, $\mathcal{S}, P(\mathcal{S})=1$.
3. For a countable collection of disjoint sets, A_{1}, A_{2}, \ldots, we have

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\sum_{j=1}^{\infty} P\left(A_{i}\right)
$$

- These are the only first-order assumptions that we make regarding probability.

Derived Properties of Probability

- $P\left(A^{C}\right)=1-P(A)$.

Derived Properties of Probability

- $P\left(A^{C}\right)=1-P(A)$.
- $P(\emptyset)=0$.

Derived Properties of Probability

- $P\left(A^{C}\right)=1-P(A)$.
- $P(\emptyset)=0$.
- For any event, $A, P(A) \leq 1$.

Derived Properties of Probability

- $P\left(A^{C}\right)=1-P(A)$.
- $P(\emptyset)=0$.
- For any event, $A, P(A) \leq 1$.
- For any two events, A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

Derived Properties of Probability

- $P\left(A^{C}\right)=1-P(A)$.
- $P(\emptyset)=0$.
- For any event, $A, P(A) \leq 1$.
- For any two events, A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

- For any three events, A, B, and C,

$$
\begin{array}{r}
P(A \cup B \cup C)=P(A)+P(B)+P(C) \\
-P(A \cap B)-P(A \cap C) \\
+P(A \cap B \cap C) .
\end{array}
$$

Counting Notions for Probability

- Suppose that all outcomes from an experiment are equally likely, and that there are N total events.

Counting Notions for Probability

- Suppose that all outcomes from an experiment are equally likely, and that there are N total events.
- Suppose that the event A, has N_{A} different ways of occurring.

Counting Notions for Probability

- Suppose that all outcomes from an experiment are equally likely, and that there are N total events.
- Suppose that the event A, has N_{A} different ways of occurring.
- Then, by definition,

$$
P(A)=\frac{N_{A}}{N}
$$

Summary

- Frequentist probabilities refer to long-run proportions on repeated experiments.
- There are three basic axioms of probability (positivity, the unitary property, and additivity).
- Further properties can be derived by manipulating these axioms.
- The value of a probability can be assigned, supposing countable outcomes, as the proportion of outcomes in which the event occurs.

